

Jerico Fiestas Flores (PhD Candidate), Grant Hauer, Wiktor Adamowicz, Mohamed Gamal El-Din, M. Anne Naeth and Pamela Chelme-Ayala

Canadian Land Reclamation Association - Alberta Chapter 2022 Annual General Meeting (AGM) and Conference

May 4th, 2022

Introduction	Motivation	Objectives	Methodology	Preliminary results
•				

Water reclamation in the Oil Sand Industry

 Oil Sand Processed Water (OSPW) continues to accumulate in tailings ponds in Northern Alberta

OSPW can be recycled for the production process and different treatment technologies are being tested

Mine firms have to decide when to treat the water, but at the moment they cannot release it as there is no water quality standards

Introduction o	Motivation ●○○○○	Objectives o	Methodology	Preliminary results
Oil Sands	Industry			

Reference: https://www.capp.ca/canadian-oil-and-natural-gas

Introduction O	Motivation ○●○○○	Objectives o	Methodology	Preliminary results
Oil Sands	Industry			

Reference: https://www.aer.ca/providing-information/by-topic/oil-sands

Introduction O	Motivation 00●00	Objectives o	Methodology	Preliminary results

Oil Sands Industry

Reference: https://www.google.com/maps

Introduction	Motivation	Objectives	Methodology	Preliminary results
O	000●0	o	000000	
Oil sand processed water (OSPW)				

OSPW is a toxic by-product of Oil Sands production that can be dangerous for wildlife and might affect the water quality of the Athabasca River (Gosselin et al. 2010).

Introduction	Motivation	Objectives	Methodology	Preliminary results
	00000			

Oil sand processed water (OSPW)

Reference: https://www.reuters.com/article/us-canada-wildfire-syncrude-idUSKCN0XY0HJ

- Estimate the treatment costs associated with different water quality standards, treatment timing requirements, and available technologies.
- Identify the optimal time for a firm to start the treatment of OPSW.
- Propose recommendations to complement and/or improve the current reclamation policy for mining water and land reclamation in Alberta.

Introduction	Motivation	Objectives	Methodology	Preliminary results
o	00000	o	●○○○○○	
Mathematic	cal programm	ning model		

Minimize: Discounted Sum of OSPW treatment cost over time (virutal mine)

Subject to:

- Available Technologies and their characteristics
- Water quality limits (Regulations)

Introduction	Motivation	Objectives	Methodology	Preliminary results
			00000	

Introduction	Motivation	Objectives	Methodology	Preliminary results
			00000	

Introduction	Motivation	Objectives	Methodology	Preliminary results
			000000	

Introduction	Motivation	Objectives	Methodology	Preliminary results
			000000	

—— Water —— OSPW

Introduction	Motivation	Objectives	Methodology	Preliminary results
o	00000	o	○○○○○●	

Treatment technologies

Membrane Bioreactor (+ Granulated Carbon)

Pit lakes

Wetlands

Technology Cost Function

Introduction o	Motivation 00000	Objectives o	Methodology	Preliminary results
Preliminary re	esults: Assum	ptions		

- Virtual Mine producing 60 Million bbl
- Early treatment (*): Wetland with Membrane Bioreactor
- Principal treatment: Wetland to be transformed into a Pitlake
- Wetland effectiveness: Low, Medium, High
- NAs standard (Mg/L): Lower (30), Medium (10), Higher (5)

Introduction	Motivation	Objectives	Methodology	Preliminary results
O	00000	o	000000	
Preliminary	results: Cos	sts		

Treatment cost under different scenarios (Million \$) 27.9 * 30 25 20 15 10 5 2.246 1.57 0 Medium Wetland Lower Wetland Higher Wetland effectiveness effectiveness effectiveness

Introduction	Motivation	Objectives	Methodology	Preliminary results
O	00000	o	000000	oo●oooo
Droliminar	v roculto: Cor	to		

Preliminary results: Costs

Introduction o	Motivation	Objectives o	Methodology	Preliminary results

Preliminary results: Treatment days

Wetland treatment days

Introduction o	Motivation 00000	Objectives o	Methodology	Preliminary results

Preliminary results: Treatment days

Wetland treatment days

Introduction	Motivation	Objectives	Methodology	Preliminary results
				0000000

Preliminary conclusions and future steps

Costs can very sensitive to assumptions about treatment effectiveness and effluent standards

Cost for treatment effectiveness and water quality changes can be 10 10 times higher than the initial case with passive technologies

Active technologies will be included, as well as different scenarios regarding the water quality standards

Introduction o	Motivation 00000	Objectives o	Methodology	Preliminary results

Thank you