

Petroleum coke as a substratum for biofiltration of oil sands process water: aerobic and anaerobic degradation processes in the biofilters

Muhammad Arslan

Postdoctoral Fellow

April 29, 2022

www.futureenergysystems.ca

Research made possible in part by funding from the Canada First Research Excellence Fund

Background

- There is an increasing interest in developing **fix-bed biofilm reactors** (FBBR) for the remediation of oil sands processed water (OSPW).
- To this end, **choice of filter media** is crucial because it **selects** specific microbial communities to grow and colonize the bed followed by degradation of organics such as naphthenic acids (NAs).
- In this study, we investigated the potential of using **petroleum coke** (PC) as a filtering media because it is readily available at the oil refining sites and is a by-product of bitumen upgrading process.

UNIVERSITY OF ALBERTA

www.futureenergysystems.ca

Key Questions

FUTURE ENERGY SYSTEMS

- What is the potential of FBBR towards NAs degradation?
- Whether bioaugmentation of NAs-degrading bacteria enhances biofiltration potential of FBBR?

Research made possible in part by funding from the Canada First Research Excellence Fund

Experimental setup of petroleum coke (PC) based fixed-bed biofilters used for OSPW remediation.

UNIVERSITY OF ALBERTA FUTURE ENERGY SYSTEMS

www.futureenergysystems.ca

Research made possible in part by funding from the Canada First Research Excellence Fund

Experimental

Phase I	 PC characterization. FBBR were operated continuously to establish microbial communities on the filtering bed. Total and active microbial communities were analyzed (DNA and RNA sequencing). 	
Phase II	 Cultivable bacteria were isolated from OSPW and oilsands tailings. The growth potential was tested on 15 model NAs (straight chain, single ring, and multiple rings). Consortium of 9 unique strains was developed. 	
Phase III	 Consortium was applied on PC bed (immobilization). FBBR were operated continuously. Degradation of NAs and aromatics was investigated. Toxicity of treated water was studied. Persistence and colonization of immobilized bacteria was assessed. 	

Biofilters' Operation

15 days circulation

10 cm

100 cm

Modified

Sample name	petroleum coke		
BET Surface area (m2/g)	0.903		
Pore Size (nm)	<2, 2-4, 4-8		

UNIVERSITY OF ALBERTA FUTURE ENERGY SYSTEMS

www.futureenergysystems.ca

Research made possible in part by funding from the Canada First Research Excellence Fund

Results

Phase I

Active communities (RNA sequencing)

- Active bacterial community was entirely anaerobic (99%).
- There were no differences in bacterial communities at different depths of FBBR.
- Deductions: (1) Degradation of NAs/organics was subject to anaerobic digestion [a scheme similar to beta-oxidation], (2) PCR of methanogens (*mcrA gene*).

	Тор	Middle	Lower
Ruminococcus; Firmicutes -	15.1	17	18
[Eubacterium]; Firmicutes -	11.5	11.5	11.1
Faecalibacterium; Firmicutes -	11	10.6	9.6
Dorea; Firmicutes -	6.6	7.4	7.4
Gemmiger; Firmicutes -	7.2	6.8	6.6
Collinsella; Actinobacteria -	4.9	5	5.1
Clostridium; Firmicutes -	4.3	4.7	4.5
Catenibacterium; Firmicutes -	4.5	4.2	4.5
_Ruminococcaceae_OTU_23; Firmicutes -	3.8	3.6	3.5
Erysipelotrichaceae_OTU_27; Firmicutes	3	2.8	3.2
Streptococcus; Firmicutes -	2.4	2.3	2.4
Butyricicoccus; Firmicutes -	2.3	2.2	2.2
Roseburia: Firmicutes	21	1.0	10

PC-based biofiltere operated under natural conditions

Biofilters' Operation

Phase II

Modified Pre-screened aerobic bacteria 10 cm (Aerobic) Тор 100 cm 50 cm (Anaerobic)

Pre-screening of NAs degrading bacteria

Phase II

NAs surrogates Molecular formula Nature CH₃COOH Ethanoic acid Straight chain Heptanoic acid CH₂(CH₂)₅COOH Straight chain CH₃(CH₂)₆COOH Straight chain Octanoic acid CH₂(CH₂)₂COOH Undecanoic acid Straight chain CH₃(CH₂)₁₀COOH Straight chain Dodecanoic acid Pimelic acid HO₂C(CH₂)₅COOH Straight chain Benzoic acid C_cH_cCOOH Single ring 4-Hydroxycyclohexylcarboxylic acid C₇H₁₂O₃ Single ring 1-Methyl-1-cyclohexanecarboxylic acid $C_{8}H_{14}O_{2}$ Single ring 10 4-Propylcyclohexane carboxylic acid C₁₀H₁₈O₂ Single ring 11 Tetrahydropyran-4-carboxylic acid C₁₀H₁₈O₄ Single ring 12 1,2,3,4-Tetrahydro-2-naphthoic acid C₁₁H₁₂O₂ Two rings 13 1-Adamantane carboxylic acid $C_{11}H_{16}O_{2}$ Complex single ring 14 $C_{20}H_{16}O_{2}$ 1-Pyrenebutyric acid Four rings 15 Lithocholic acid Complex multiple rings $C_{24}H_{40}O_{3}$

1 2

3

4

5

6

7

8

9

Consortium development and application

Phase II

ID	Strain name	Source	Percent	Accession	Catabolic	
			Identity	Number	genes	
1	Pseudomonas stuzeri	Tailings	100%	MT729811	CYP153	
2	Bosea lathyri	Tailings	99.26%	MT729812	CYP153	
					and alkB	
3	Sphingopyxis witflariensis	Tailings	99.36%	MT729813	CYP153	
					and alkB	
4	Pseudomonas vancouverensis	Tailings	94.23%	MT729814	CYP153	
5	Pseudomonas knackmussii	Tailings	96.98%	MT729815	alkB	Consortium
6	Aquamicrobium aestuarii	OSPW	98.11%	MT729816	CYP153	1:1:1
7	Aquamicrobium terrae	OSPW	99.34%	MT729817	Not	
					detected	
8	Pseudomonas turukhanskensis	Tailings	98.33%	MT729818	CYP153	
					and alkB	
9	Staphylococcus hominis	OSPW	99.48%	MT729819	Not	
					detected	Immobilization efficiency : 239

• Three bacteria were selected for consortium development.

Naphthenic Acids

Phase III

21 23 25

Carbon number

■16

18

Fluorophores (aromatic compounds) and Chemical Oxygen Demand

Phase III

Chemical Oxygen Demand

• Bacterial inoculation displayed higher removal of aromatic compounds, as well as COD reduction

MicroTox® and **Microscopy**

 Highest reduction in toxicity was observed when OSPW was treated in the presence of bacterial augmentation.

• Bacterial inoculation displayed colonization in the form of clusters.

Performance Evaluation

Biodegrada tion process	Circulat ion	OSPW	Influent NA concentratio n (mg/L)	Effluent NA concentratio n (mg/L)	NA removal efficiency (%)	Reference s
Petroleum coke biofilter	15 days	Raw	15.93	12.85	19.3%	This study
Petroleum coke biofilter + bacteria	15 days	Raw	16.10	10.87	32.5%	This study
Sand biofilter	23 days	Raw	13.1	10.2	22.1%	Zhang et al., 2018
MBBR	214 days	Raw	19.8	12.9	34.8%	Shi et al., 2015
IFAS	335 days	Raw	25.1	14.3	43.0%	Huang et al., 2015

Microbial Community Structures (Bioaugmentation)

DNA-Stable Isotope Probing (¹³C and ¹²C labeling of NA surrogates)

Oleic acid, palmitic acid, myristic acid, benzoic acid, phenylalanine, 2-keto-4-methylpantonic acid

Microbial Community Structures (Bioaugmentation)

Summary Mechanisms

- Active community in PC comprises anaerobes, which allow remediation via anaerobic digestion.
- OSPW remediation under natural conditions are coupled with methanogenesis in a syntrophic mechanism.
- Removal of classical NAs, O₃-NAs, and fluorophore (aromatic) compounds was evident in the presence of bacterial augmentation.
- DNA-SIP revealed a high degree of **methylotrophy** in the *Schumutzdecke*.
- Oxygen was primarily consumed by methylotrophs rather than used for degradation of NAs.
- PC + bioaugmentation for aerated OSPW is beneficial and release of CH_a can be minimized

