Evaluating Phase 1 ESA Production Triggers and Update to PTAC Drilling Waste Compliance Option Project

Adapting and Collaborating When Determining Risk

Presented by: Jim Purves, B.Sc., P.Ag.

Evaluation Focus

Phase 1 ESA "Easy Triggers'

- Historic spills/releases
- Salt water injection facilities
- Bare areas/reduced vegetation
- Historic flare pits
- USTs
- Landowner concerns
- Known contamination

It Depends.....

- Age of the facility
 - Ties into operational practices of the period
 - Ties into regulatory requirements of the period
- Type of facility (dry gas, wet gas, oil, or some combination)
- Length of production
- Volume of production
- Infrastructure setup

Production Rationale Evaluation Process

	0					D Workb	ookl						
PI		2004	🖌 👩 • 🔞 •	I . 20 . F	· 🕢 🗄 🖷	Q. Search in Sheet							
٠	Home Layout	Tables C	arts SmartArt	Formulas	Data Rev	iew						~	
		Inset: Chart		Insert Sparkl	T#1	Data.		Chart Quick Layouts			Chart Styles		
1	· 1/2. 0.	🚍 - 🏤	150 C -	M Ilm	""			a land in	On Hard ro	all	1111		
Colu	min Line Pie	Bar Area	Scatter Other	Line Column	Win/Loss Sele	a Switch Plot	100.0			1. 1. 1. 1.			
-	A18 : 6	3 🔿 (~ <i>f</i> x								nd as hi			
12	A	B	C	D	E	F	G	н	1	J	K	L	
2	New York	4,800,000	3,700,000	3,300,000	2,700,000	2,400,000	1,200,000	4,000,000	3,200,000	1,900,000	1,700,000		
3	Chicago	1,200,000	1,500,000	2,000,000	2,400,000	2,600,000	2,000,000	1,500,000	1,400,000	1,200,000	1,000,000		
4	Los Angeles	2,200,000	2,300,000	3,000,000	2,800,000	1,800,000	4,000,000	3,200,000	5,500,000	6,200,000	7,200,000		
5	San Francisco	4,800,000	3,700,000	3,300,000	2,700,000	2,400,000	1,200,000	4,000,000	3,200,000	1,900,000	1,700,000		
6	Dallas	1,200,000	1,500,000	2,000,000	2,400,000	2,600,000	2,000,000	1,500,000	1,400,000	1,200,000	1,000,000		
7	Boston	2,200,000	2,300,000	3,000,000	2,800,000	1,800,000	4,000,000	3,200,000	5,500,000	6,200,000	7,200,000		
8	Cleveland	1,200,000	1,500,000	2,000,000	2,400,000	2,600,000	2,000,000	1,500,000	1,400,000	1,200,000	1,000,000		
9	San Jose	2,200,000	2,300,000	3,000,000	2,800,000	1,800,000	4,000,000	3,200,000	5,500,000	6,200,000	7,200,000		
10	Baltimore	4,800,000	3,700,000	3,300,000	2,700,000	2,400,000	1,200,000	4,000,000	3,200,000	1,900,000	1,700,000		
11	Orlando	1,200,000	1,500,000	2,000,000	2,400,000	2,600,000	2,000,000	1,500,000	1,400,000	1,200,000	1,000,000		
12	Omaha	2,200,000	2,300,000	3,000,000	2,800,000	1,800,000	4,000,000	3,200,000	5,500,000	6,200,000	7,200,000		
13	Miami	4,800,000	3,700,000	3,300,000	2,700,000	2,400,000	1,200,000	4,000,000	3,200,000	1,900,000	1,700,000		
14	Tampa	1,200,000	1,500,000	2,000,000	2,400,000	2,600,000	2,000,000	1,500,000	1,400,000	1,200,000	1,000,000		
15	Houston	2,200,000	2,300,000	3,000,000	2,800,000	1,800,000	4,000,000	3,200,000	5,500,000	6,200,000	7,200,000		
16	Phoenix	1,200,000	1,500,000	2,000,000	2,400,000	2,600,000	2,000,000	1,500,000	1,400,000	1,200,000	1,000,000		
17	Las Vegas	2,200,000	2,300,000	3,000,000	2,800,000	1,800,000	4,000,000	3,200,000	5,500,000	6,200,000	7,200,000		

Things a Zombie Would Do

n-1 is the number of sample values decreased

 $|x-ar{x}|^2$ represents the deviation from the sample mean

Regulatory Guidance Changes

1971: No oil or hydrocarbons in earthen pits

1994: IL-94-6 – production fluids no longer allowed to be received into earthen structures as of Dec 31/1996

1996: Flaring to earthen pits prohibited after July 1/1996

2001: Revision of Directive 055: Storage Requirements

2012: Revision of Directive 050

2016: Specified Enactment Direction (SED) 002

All Sites						
Sort by Spud Date	# of sites	Pass (n)	Pass %	Fail (n)	Fail %	
All Sites	141	104	74	37	26	5

Oil, Gas and Water Wells

Events of 1980

Dry Gas Wells

Dry Gas			
Sort by Spud Date	# of sites	Pass%	Fail %
All Sites	12	58.4	41.6
Pre 1971 Spud	1	0	100
1971 - 1986	1	0	100
1987 - 2001	8	75	25
2002 - 2012	2	50	50
Post 2012			

Production Rationale Matrix

- Utilize dates of major Regulatory criteria changes
- Spud date certainly had the largest influence
- Volume of production and length of production are influential, but mainly on the low end (low volume and short production lengths)

Develop a Decision Matrix which is DEFENDABLE

Drilling Waste Compliance Project

- Focused on drilling waste disposals prior to 2012
- Evaluate correlation between Compliance Option 2 triggers and actual Tier 1 exceedances during the Phase 2 ESA
- Use statistical analysis to determine relationships between the triggers
- Provide recommendations for proposed guideline adjustments

General Data Trending

PTAC Stage 1: Data Gathering

Canadian Natural

Husky

селоуиз

Orphan Well Association

1681 Sites Reviewed 510 Candidate Sites Identified

Stage 2: Data Analysis

• Descriptive Statistics (removing data outliers)

 Categorical Data (two-way contingency tables, Pearson's Chi-square and/or Fisher Exact Tests)

 Predictive Modeling (Multi-variable Binominal Regression)

> $Y = B_0 + B_1 X_1 + B_2 X_2 + \cdots \dots + B_k X_k$ Y = Phase 2 Pass/Fail $B_0 = Constant$ $B_1 = Coefficient of variable X_1$ $X_1 = Independent PH 1 predictor variables (production amount, salt calculation, production years... etc.)$

$$x^2 = \sum \frac{(O-E)^2}{E}$$

 x^2 = The test statistic O = Observed E = Expected $\sum \square$ = The sum of

False Positive and False Negative Errors

		PHASE I							
		PASS	FAIL						
SE II	PASS	CORRECT	FALSE NEGATIVE						
PHA	FAIL	FALSE POSITIVE	CORRECT						

Spud Date Distribution

Post-Disposal PHC Concentration

1996 D50 (0.5% Topsoil, 0.1% Subsoil) TOTAL Hydrocarbons

VS Tier 1 Endpoints BTEX, F1-F4 PHC

<u>1996 D050 (0.1% Subsoil Total PHC)</u> <u>VS</u>

2019 AB Tier 1

	BTEX and PHC (F1-F4)									
-	Benzene	Toluene	Ethylbenzene	Total Xylenes	F1 ²	F2	F3	F4 ³	TOTAL PHC (mg/kg)	% Total PHC
AEP Tier 1 2019 Subsurface	0.046	0.52	0.073	0.99	420	300	2600	10000	13321	1.33
1996 D050 [PHC] - Subsoil	(X) 21739	(X) 1923	(X) 13698	(X) 1010	(X) 2.4	(X) 3.3	OVER	OVER	1000	0.1
-									~	

Phase 1 PHC Trigger VS Phase 2 Results

Salt and Default DST Triggers

 Salts - Sodium Hydroxide Equivalency (NaOH) 0.026 and 0.035

> DST default chloride concentration 350,000 mg/L - 2007 215,000 mg/L - 2012

> > **Too Conservative?**

Salt Calculation Trigger VS Phase 2 Results

Phase 1 Salt Calculation Values based on the Phase 2 EC Outcomes

Default DST Chloride Concentration Vs Phase 2 Results

>50% DST

PHC, Salt and DST Opportunities

- Phase 1 post disposal PHC concentration is not an accurate predictor of Tier 1 exceedances during the Phase 2
- SALT Calculation likely too conservative
- Default Chloride DST concentration too conservative (215,000 mg/kg)
- Research chloride concentrations based on formation that the DST return was taken from
- Using formation specific DST chloride concentrations that more accurately reflect risk associated with your site

QUESTIONS??

Jim Purves, B.Sc., P.Ag. Technical Advisor jpurves@northshoreenv.com 780-913-6137

www.northshoreenv.com

