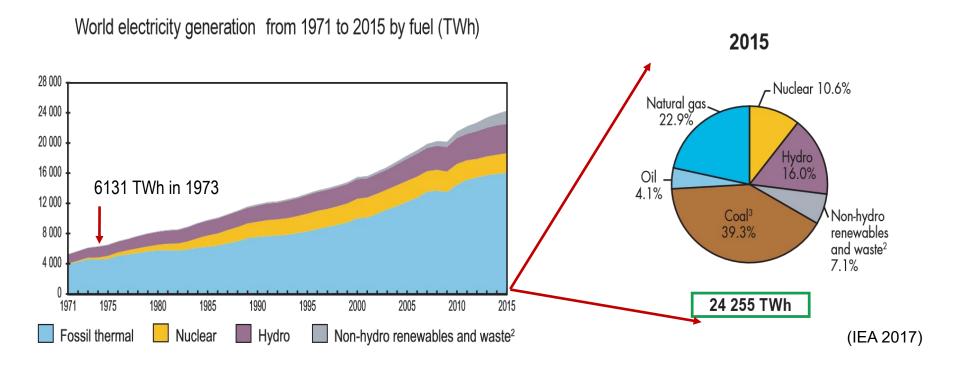


UNIVERSITY OF ALBERTA FUTURE ENERGY SYSTEMS


Biophysical Impacts And Reclamation Considerations For Solar, Wind and Geothermal Energy Systems

Amalesh Dhar M Anne Naeth, Dev Jennings and Mohamed Gamal El-Din University of Alberta

February 27 2020

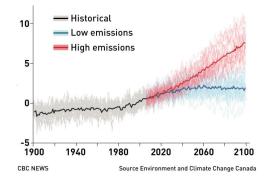
Global Energy System

- Fossil fuel contributes 66.3 % of world electric energy demand
- Global energy demand expected to increase 35 % by 2030

Impact Of Conventional Energy System

• Fossil fuel based energy is the major source of GHG emission

Energy type	CO ₂ [g/KWh]	SO ₂ [g/KWh]	NO _x [g/KWh]	Particulates [g/KWh]
Coal	994-1130	~4.71	~2.0	~1.0
Oil	~758	~5.44	~1.8	NA
Gas	~550	~0.1	~1.3	~0.06

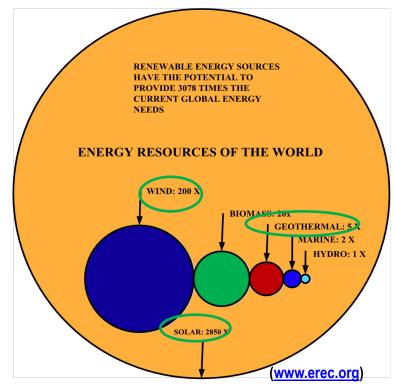

- USA fossil fuels contribute 36 % electricity and emit 41 % CO₂
- Alberta fossil fuels contribute 89 % electricity and emit 17 % CO₂
- Alberta power sector generated 58 % of total Canadian GHG emissions from power generation

Impact Of Conventional Energy System

• Emissions lead to increasing climate extreme events

Annual temperature change in Canada 1900-2100 (degrees Celsius)

Importance of Renewable Energy

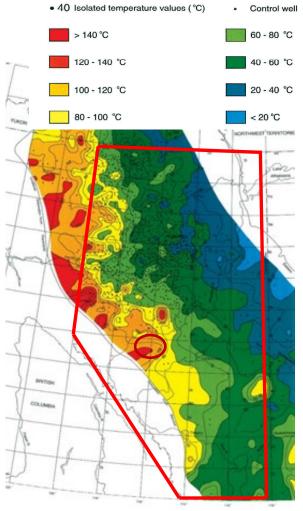

- Move from carbon intensive to renewable energy can
 - Mitigate climate change
 - Safeguard energy security
 - Increase sustainability of human activities

Energy Type	CO ₂ [g/KWh]	SO ₂ [g/KWh]	NO _x [g/KWh]	Particulates [g/KWh]
Geothermal	0-39	0 - 0.16	0	0
Solar	14-38	0	0	0
Wind	12-14	0	0	0

• In USA, if solar energy contributes 10 % of national demand then reduction of CO_2 emission would be 6.5 to 18.8 %

Renewable Energy

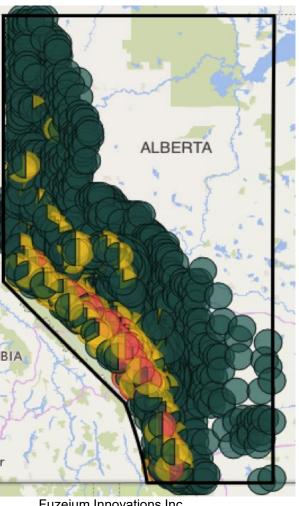
- Global production as of 2017
 - Geothermal 14 GW
 - Solar 402 GW
 - Wind 539 GW
- Canada
 - 13th in solar (0.6%) 3.11GW
 - 9th in wind (5.3%) 12.8 GW
 - 167 MWe geothermal for heating
- 1st Geothermal plant Saskatchewan
 - Power 5000 home
 - Offset 27,000 t CO₂ yr⁻¹


Global energy resources potential

- Alberta
 - Solar 63 MW
 - Wind 1.5 GW
 - Geothermal planning

Alberta Geothermal Energy

- Can produce 389 GW
 - Plant in Hinton



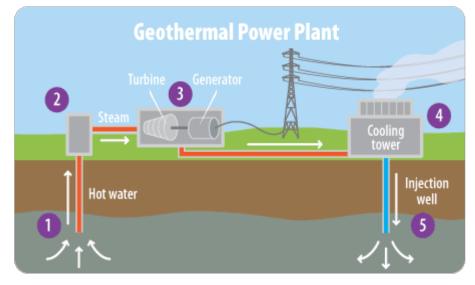
https://ags.aer.ca/publications/chapter-30-geothermal-regime.htm

60935 oil gas wells

>120°C >90°C >60°C

Fuzeium Innovations Inc.

Are solar, wind and geothermal energy sources really as clean as widely believed



Solar, Wind Geothermal Energy Environmental Impacts

Environmental Impacts: Solar, Wind, Geothermal

Soil

- Compaction and topsoil erosion
- Increase sediment or turbidity in local streams

Vegetation and wildlife

- Vegetation and habitat loss
- Wildlife mortality: 37-138K for solar, 20-234K for wind
- Fragmentation and barrier of wildlife movement

Footprint

- Wind: ~0.4 haMW⁻¹ and temporarily 1.5haMW⁻¹
- Solar: 595-6600 m²MW⁻¹
- Geothermal: 0.02-3.00 haMW⁻¹, conflict with other land uses

Environmental Impacts: Solar Specific

Water

- Cleaning mirrors and panels 860 LMWh⁻¹
- 60-90 % water use for dust control

Hazardous waste

- Chemical compounds cadmium (Cd), selenium, lead
- 5 g of Cd m⁻²

Emissions

- No emission during operation
- Panel manufacturing: 14-38 g kWh⁻¹ CO₂, ~0.1gGWh⁻¹ mercury

Environmental Impacts: Wind Specific

Visual

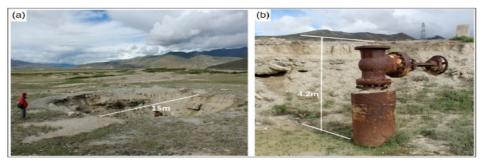
- Change natural landscapes view, NIMBY syndrome, shadow flickering

Noise

- Creates irritating rhythmical swishing tone (<1000 Hz)

Environmental Impacts: Geothermal Specific

Air


- Greenhouse gas emissions (CO₂, H₂S, SO₂, NH₃)

Water

- Contamination of aquifers and other water bodies
- 2 km well installation requires 8,000-55,000 m³ of water

Geophysical and land hazards

- Subsidence (1-45 cm/yr), landslide and hydrothermal eruptions

Subsidence: Geothermal plant in Tibet

Mitigation: Solar, Wind, Geothermal

Soil

- Restored surrounding disturbed area for reducing erosion and compactness
- Consider careful landscaping during plant construction

Vegetation and wildlife

- Plants should be located in areas of little biodiversity
- Avoid area with important bird habitats or migration routes
- Improving structural design (e.g. enlarging blades, slowing rotational speed of wind turbines)
- Increase visibility or limit operation during the heaviest migration

Mitigation: Solar, Wind, Geothermal

Footprint

- Avoid ecologically sensitive areas where possible
- Colocation with other energy systems
- Use landfill or abandoned mine sites (re-powering)
- In USA, >11,000 sites (~6 million ha), can produce 1000 GW

March 26, 2020

Mitigation: Solar Specific

Water

- Use rain or other recycled water
- Need to develop alternative methods to increase cleaning efficiency
- Plant should be nearby continuous water supply facility
- Avoiding locations that impacts on surface water bodies

Hazardous waste

- Recycling solar panels to reduce the hazardous chemical
- Take proper care when disposing of chemicals and cleaning equipment

Visual

- Proper alignment of wind turbine tower layouts smaller numbers of wind turbines
- Shadow flickering can be reduced by optimizing the rotor blade surface smoothness, coating with less reflecting materials

Noise

- Careful design of the blades
- Construct plant close to noisy areas (road traffic)

Mitigation: Geothermal Specific

Air

- Design the plant to avoid steam release to air, use ventilation

Water

- Control water spell to soil, and below and above ground aquatic systems

Geophysical hazards

- Incorporating reinjection to control subsidence

Take Home Message: Solar, Wind, Geothermal

- These energy systems are not free of adverse environmental consequences
- Have low GHG emissions and land use, are abundant in nature
- Major environmental drawbacks
 - Bird mortality (solar and wind)
 - Biodiversity and habitat loss
 - Noise (wind)
 - Visual impact (wind)
 - Hazardous chemicals (solar and geothermal)
- Geothermal has small risks of subsidence, induced seismicity and landslides, with potential serious consequences

Reclamation Consideration

Reclamation Regulations

• Requires well defined reclamation regulations and reclamation bonds

- Alberta Government amended
 - Conservation and Reclamation Regulation (Government of Alberta, 2018a)
 - Conservation and Reclamation Directive for solar and wind energy operations (Government of Alberta, 2018b)

• No regulations or policies for geothermal energy in Alberta

Reclamation Process

• An outline of restoration and aftercare statement should be documented at planning phase

 Cover soil should be salvaged and temporarily stockpiled

- Two phases of reclamation
 - Intermediate
 - Final

Reclamation Process: Intermediate Phase

- Right after plant construction, excluding
 - Wind turbine tower, base of solar panels
 - Geothermal wells heads
 - Facility structures, infrastructure
- Landform should be reconstructed with 10-20cm cover soils replacement depth
- Stockpiled some salvaged cover soils for final reclamation and management
- Cover soils placed roughly or in small piles
 - To reduce compactness
 - To create microtopographic heterogeneity

Reclamation Process: Intermediate Phase

- Enhance seedbed quality and productivity by
 - Mulching
 - Hydro seeding
 - Targeted fertilization
 - Watering

Revegetate with desired plant species by planting or seeding

 Revegetated between and under rows of solar panels once they are installed

Reclamation Process: Final Phase

Decommissioning

- Methodical deconstruction process.
- Care taken to reduce disturbance in existing reclaimed areas

Contaminant remediation

- Investigation and cleanup of hazardous materials before reclamation

Reclamation

- Solar, wind base and geothermal wells should be plugged with previously stockpiled or other soils
- Revegetation with appropriate species by planting or seeding

Monitoring

- Until reclamation goals and regulatory requirements are met

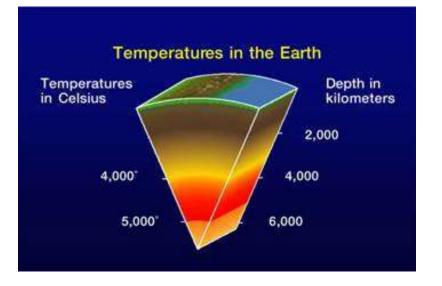
Acknowledgements

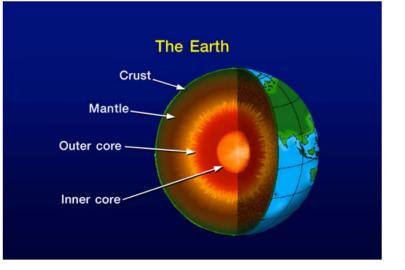
This research has been undertaken thanks in part to funding from the Canada First Research Excellence Fund.

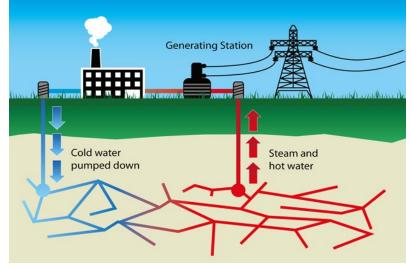
Theme: Resilient Reclaimed Land and Water Systems

Thank You

Contact


Amalesh Dhar, PhD Department of Renewable Resources 847 General Service Building University of Alberta Phone: 780-492-6538 Email: amalesh@ualberta.ca





Geothermal Energy

Energy that comes from the ground; power extracted from heat stored in the earth

©The Roseland Telegraph

