Site Evaluation and Design Considerations for In-Situ Remediation Success!

Barry Rakewich, P.Ag., EP Nichols Environmental (Canada) Ltd.

Outline

Site Evaluation

Is your site a good candidate for a sustainable In-situ remediation program?

Design Considerations
 Mass Balance Calculations
 Amendment Options
 Delivery Methods

Phase I/II ESA

Contaminant of Concern

- Petroleum Hydrocarbons, Chlorinated Solvents, Metals, Pesticides, Salt, etc.
- Plume Characterization
 - Area of Impact (size of plume)
 - Depth and Thickness of Impacts
 - Contaminant Concertation
 - □ Source Area vs Plume

Phase II ESA

Sub Soil Conditions

Soil Type – Lithology

□ Fine or Coarse Grained Soils, Porosity, Density

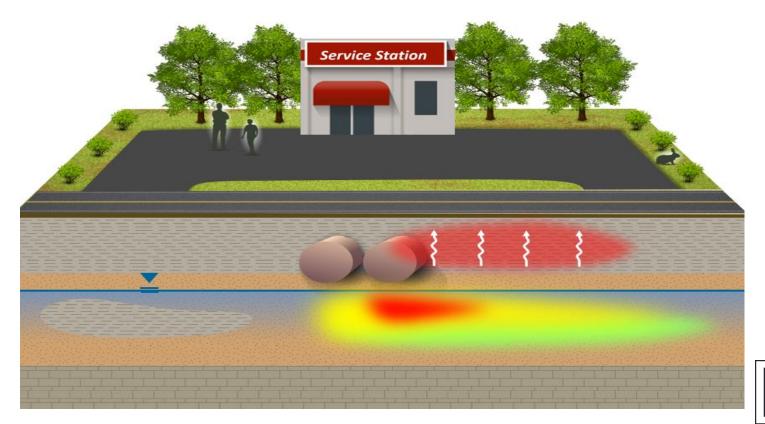
Homogenous or Heterogeneous Soils

Hydrogeology

□ Groundwater Depth, Hydraulic Conductivity/Gradient

- Geochemistry
 - □ Current Site Conditions (ORP, pH, DO, Temp)
 - Available Nutrients & Electron Donors/Acceptors
 - Soil Oxidant Demand

Site Operations
 Site Active or Vacant


Site Infrastructure

- Buildings, pump islands, potable wells
- Surface materials (asphalt, gravel, concrete, grass)
- Underground utilities

Conceptual Site Model

NICHOLS ENVIRONMENTAI

- Timeline
 - Is your client able to wait for remediation to be achieved?
- Site Criteria
 - What are your remediation guidelines?
 - Are they achievable via in situ?
- Cost/Sustainability
 - Are other remedial measures cost prohibitive (ie. Dig and Dump)?
 - Sustainability Evaluation

Design Consideration

Production Selection

(Contact you consultants or chemical suppliers)

- Klozur SP, One, KP, CR
- Daramend Reagent
- Terramend Reagent
- EHC ISCR Reagent
- EHC Plus
- MetaFix Reagents
- Ferrous Sulphate
- Sodium Persulphate
- Sodium Metabisulphite
- Potassium Permanganate

- Plume Stop
- PetroFix
- S-MIcroZVI
- Chemical Reducing Solution
- Micro Emulsion
- Hydrogen Release Compound
- Oxygen Releasing Compound
- PersulfOX
- RegenOX
- Hydrogen Peroxide

Design Considerations

Mass Balance Calculation

Site Evaluation - Mass Balance Calculation					
_	GW Conc	Guideline	Soil Conc.	Guideline	% Reduction to
Contaminant	mg/L	mg/L	mg/kg	mg/kg	Compliance
	I				
Plume Size	m	2	Total KG		kg
Thickness			Total Contaminant KG		1
	m				kg
Total Volume	m	5	Water Table Depth		mbg
pH	S.	U	Total Porosity		unitless
ORP	m'	V	Effective Porosity		unitless
DO	m	g/L	Gradient		m/m
Nitrate	m	g/L	Hydraulic Conductivity		m/day
Total Manganese	m	g/L	Groundwater Seepage		m/yr
Dissolved Manganese (Mn2+)		g/L			
Total Iron		g/L			
Dissolved Iron (Fe2+)		g/L			
Sulfate	m	g/L			
		- //	Г		л — — — — — — — — — — — — — — — — — — —
BOD COD		g/L			
	III	g/L	Soil type (gravel, sand, silty		
Soil Oxidant Demand			sand, silt, clay, bedrock)		
(SOD-lab measured)	g/	kg			

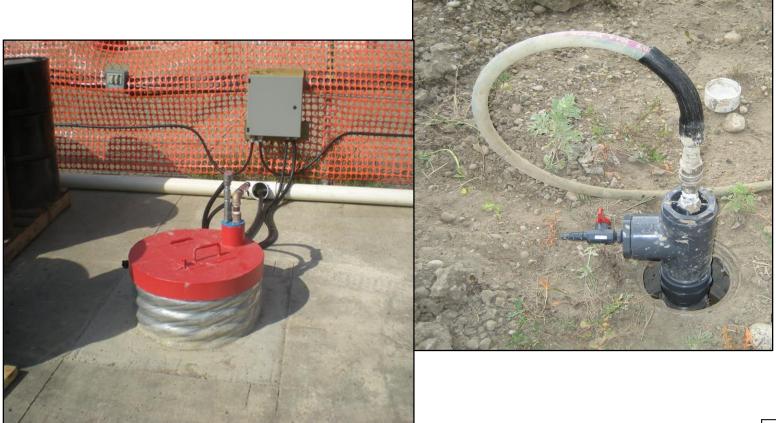
Design Considerations Bench Trial/Pilot Studies

Design ConsiderationsIn-Situ Delivery Methods

Direct Push

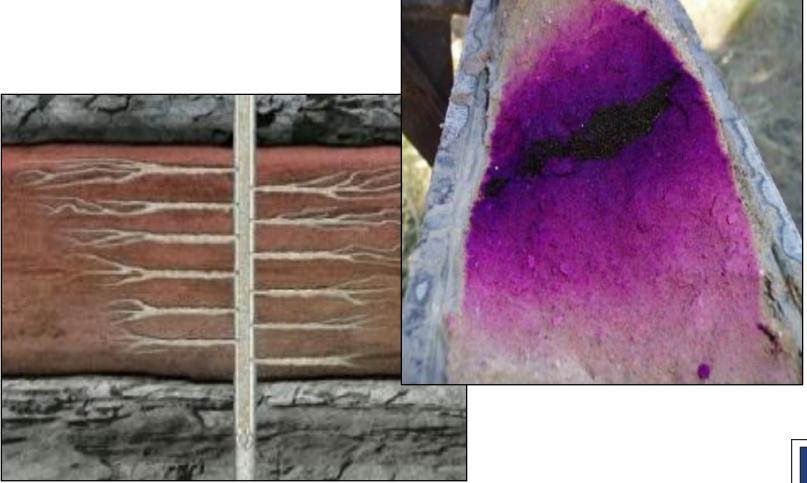
Dedicated Injection Wells
Site / Excavation Flooding
Hydraulic Fracturing
High Pressure Injection
Infiltration Galleries

Direct Push



Dedicated Injection Wells

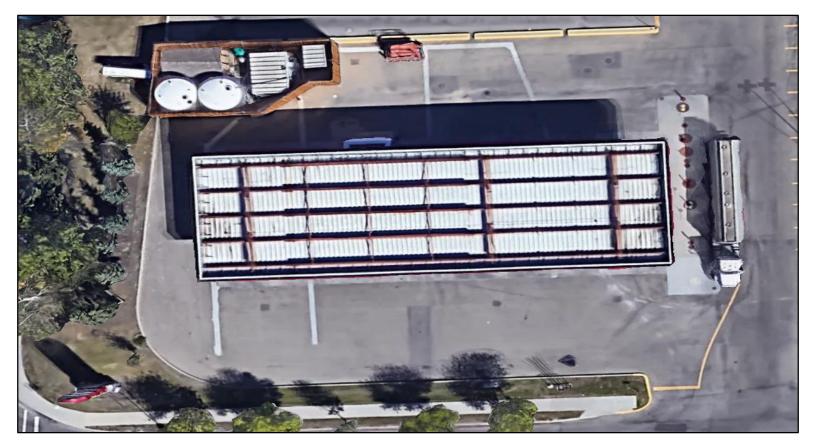
Dedicated Injection Wells



Excavation Flooding

Hydraulic Fracturing

High Pressure Injections



Infiltration Galleries

Infiltration Galleries

Design Considerations

- Time of Year / Temperature
- Site Access / Location
- Public Safety & Perception
- Mixing / Solution Preparation

□ Water and power availability

Health and Safety of Workers

Monitoring for Success

Real Time Field Monitoring

- Measure amendment delivery efficiency
- Determine radius of influence from injection points

Monitoring for Success

Post Injection Sampling

- Complete GW sampling 1 mth, 6 mths, 1 year, 2 years...
- Sample for COCs and other indicator parameters (EC, pH, routine parameters, macronutrients, etc...)
- □ Closure soil sampling once there is confidence in GW results

Conclusions

- Investigate, Investigate, Investigate
 Know your plume and your Site
- Consider all treatment options available
 Ask the experts for help
- Test the plan before jumping in head first
 Be prepared to alter that plan

Conclusions

- Utilize multiple remedial methods or delivery options depending on your site characteristics
- Consider Real Time Monitoring and Post Injection Sampling
- Manage the expectations of your clients
- Set yourself up for the opportunity for success!!

Questions

Kyle Jackson, Senior Project Manager jackson@nicholsenvironmental.com

Barry Rakewich, General Manager rakewich@nicholsenvironmental.com

